Магазин у відпустці 23.05 - 28.05. Всі замовлення будуть оброблені в понеділок

Обмен данными между двумя Arduino при помощи программного UART

Коммуникация по последовательному порту, по умному называемая как универсальный асинхронный прием / передача (UART), как правило, используется для программирования и отладки Arduino через порт USB. Существуют разные датчики и приборы, которые используют UART как метод основной связи, и иногда нам нужно объединять два и больше Arduino между собой для обмена информацией.

Тем не менее, у большинства Arduino имеется только один последовательный порт, который используется при связи по USB. Но как же связать такой контроллер с другим? Конечно использование Arduino типа Mega или подобного решает эту задачу, ведь у него до четырех последовательных портов, но если нужна связь с простыми платами из линейки Ардуино, тут нужно искать другой выход. Существует особая программная библиотека, которая имитирует UART порт на других цифровых контактах. У нее имеются несколько недостатков, но в общем она работает.

Так что нам понадобится для демонстрации подобной коммуникации:

2 Arduino контроллера

Соединительные провода

Выполните следующие шаги, для подключения двух Arduino UNO, с помощью программного последовательного порта:

1. Например, воспользуемся выводами 8 и 9 для RX и TX на обоих Arduino, соедините контакт 8 на одном Arduino с контактом 9 на другом, и контакт 9 на первом Arduino подключить с контактом 8 на втором.

2. Соедините общий провод GND обеих Arduino вместе.

3. Подключите один Arduino к USB компьютера, и соедините вывод 5В этого контроллера с таким же выводом другого или подайте на второй отдельное питание.

Вот реализация с использованием выводов 8 и 9 для RX и TX:




Следующий код разделен на две части. Arduino мастер будет получать команды от компьютера и передавать их по программному последовательному порту. Вот первая часть кода:


// Подключаем библиотеку Software Serial

#include <SoftwareSerial.h>

// Объявляем задействованные дискретные каналы контроллера для связи

SoftwareSerial softSerial(8, 9); // RX, TX>

void setup(){

Serial.begin(9600); // Обычная скорость передачи данных

softSerial.begin(9600); // инициализация программного последовательного порта

}

void loop(){

// Проверяем получение команд от компьютера

if (Serial.available()){

// Отправляем полученную команду компьютера на программный UART

softSerial.write(Serial.read());

}

}


А вот и код подчиненного (слейва), который интерпретирует символы, отправленные от мастера. Если пришол символ «а», он включит встроенный светодиод. Если получен символ «х», то светодиод будет потушен:


// Подключение библиотеки Software Serial

#include <SoftwareSerial.h>

// Назначение задействованных дискретных каналов

SoftwareSerial softSerial(8, 9); // RX, TX

// Дискретный канал, на котором висит встроенный светодиод

int LED = 13;

void setup(){

softSerial.begin(9600); // Инициализация программного последовательного порта

pinMode(LED, OUTPUT); // Определение светодиодного вывода как выход

}

void loop(){

// Проверяем, есть ли что-нибудь в буфере программного последовательного порта

if (softSerial.available()){

// Читаем один символ из буфера программного последовательного порта и сохраняем его переменную com

int com = softSerial.read();

// Действуем соответственно полученному символу

if (com == 'x'){

// Выключение светодиода

digitalWrite(LED, LOW);

}

else if (com == 'a'){

// Включение светодиода

digitalWrite(LED, HIGH);

}

}

}


Как это работает

Программный последовательный порт имитирует стандартный последовательный порт на различных цифровых выводах Arduino. Это довольно удобно в целом, но нужно понимать, что это программная имитация, не поддержанная аппаратно. Это означает, что при этом тратятся общие ресурсы контроллера, в частности время выполнения цикла программы и памяти. А вообще, оно работает просто как обычный последовательный порт. Все функции, присутствующие в нормальном последовательном порте также присутствуют и в программном.

Разбор кода

Для начала взглянем на программу мастера, который получает команды по обычному последовательному порту с компьютера и отправляет подчиненному контроллеру. В начале кода мы подключаем библиотеку SoftwareSerial.h


#include <SoftwareSerial.h>


Дальше нам нужно объявить объект нашей библиотеки. Это делается соответственно следующему синтаксису:


SoftwareSerial softSerial(8, 9); // RX, TX


При этом будет вызвана параллельная связь, в данном случае программная. Она будет использовать вывод 8 для чтения (RX) и вывод 9 для передачи (TX). Далее подробнее остановимся на том, какие именно выводы следует выбирать.

Используя объявленный объект библиотеки, мы можем использовать все функции, характерные для обычного аппаратного параллельного порта, такие как softSerial.read(), softSerial.write() и так далее. В следующей части кода мы проверяем пришло ли что-нибудь с аппаратного порта. И если что-то пришло, мы считываем это и отправляем в программный порт:


if (Serial.available()){

softSerial.write(Serial.read());

}


В коде подчиненного контроллера использована самая простая реализация управления светодиодом командами через последовательный порт с одной только разницей, что тут используются команды с программного порта. Меняется только синтаксис и вместо привычных функций Serial.read(), Serial.available() и так далее нужно писать softSerial.read() и softSerial.available().

Программный UART имеет некоторые важные ограничения и недостатки. Вот некоторые из них.

Использование выводов

Мы не можем использовать любые дискретные выводы плат Arduino для организации программного порта. Для Tx, вообще-то можем использовать любые, но для Rx можно использовать только те, которые поддерживают внешние прерывания. У плат Arduino Leonardo и Micro могут быть использованы только выводы 8, 9, 10, 11, 14, 15 и 16, в то время как у Mega или Mega 2560 могут быть использованы только выводы 10, 11, 12, 13, 50, 51, 52, 53, 62, 63, 64, 65, 66, 67, 68 и 69.

Другие программные параллельные коммуникации

Можно организовывать и более одной программной последовательной связи, однако одновременно данные может получать только одно соединение. Это может становиться причиной потери данных. Но существует альтернативная библиотека программного параллельного порта, написанная Полом Стофрегеном, которая призвана решить как раз данную проблему. http://www.pjrc.com/teensy/td_libs_AltSoftSerial.html


Написать отзыв

Примечание: HTML разметка не поддерживается! Используйте обычный текст.
    Плохо           Хорошо
Паяльник 60Вт с регулятором

Паяльник 60Вт с регулятором

Удобный лёгкий паяльник с регулятором температуры и набором сменных насадок..

254.10грн.

LCD дисплей 2х16 с шиной I2C

LCD дисплей 2х16 с шиной I2C

Символьный LCD индикатор коммуникационным модулем I2C.2 строки.16 символов в строке.Синяя подсветка...

82.27грн.

Вентилятор 5В 40мм

Вентилятор 5В 40мм

Вентилятор системы охлаждения греющихся элементов электронной конструкции.Используется для обдува ра..

56.45грн.

Выбор шагового двигателя

Выбор шагового двигателя

Вам уже приходилось делать выбор между разными шаговыми двигателями для реализации своих амбициозных..

Шилд CNC для Arduino UNO

Шилд CNC для Arduino UNO

Шилд для платы контроллера Arduino UNO  для управления CNC-станком или 3D-принтером.4 разъема п..

79.41грн.

Новое

Модуль твердотельного реле 4-канальный

Модуль твердотельного реле 4-канальный

Модуль предназначен для коммутации нагрузок с переменным напряжением питания 75 ... 264 ВМаксимальны..

Оптопара EL817 SMD

Оптопара EL817 SMD

Оптопара с транзистором на выходеПрименяется для гальванической развязки дискретного сигнала, а так ..

Стабилизатор напряжения 5В 2А микросхема L78S05CV

Стабилизатор напряжения 5В 2А микросхема L78S05CV

Микросхема стабилизатор напряжения L78S05CVПрименяется для стабилизации пульсирующего напряжени..

Программатор AVR-контроллеров USBASP

Программатор AVR-контроллеров USBASP

Программатор для загрузки и отладки программ в микроконтроллеры компании ATMEL.Интерфейс програ..

Сдвиговый регистр 74HC595N

Сдвиговый регистр 74HC595N

Эту микросхему используют для управления светодиодными гирляндами и символьными индикаторами.Она поз..

Светодиод ультраяркий 3мм

Светодиод ультраяркий 3мм

Сверхяркий светодиод диаметром 3 ммКорпус прозрачный у светодиодов разного цвета свечения. То есть р..

Вентилятор для Orange PI толщиной 10мм

Вентилятор для Orange PI толщиной 10мм

Вентилятор для охлаждения процессора мини-компьютера Orange PI или Raspberry PIРаботает безшумноПита..

Терминальный разъемный коннектор угловой 4п

Терминальный разъемный коннектор угловой 4п

Разъемный 4-проводной коннектор для пайки на печатную платуПровода подводятся параллельно плате и со..

Шестерня для зубчатого ремня на 20 зубьев под ось 5 мм

Шестерня для зубчатого ремня на 20 зубьев под ось 5 мм

Используется для передачи и редукции крутящего момента от двигателяКоличество зубьев 20 шт.Диаметр о..

Терминальный разъемный коннектор угловой 3п

Терминальный разъемный коннектор угловой 3п

Разъемный трёхпроводной коннектор для пайки на печатную платуПровода подводятся параллельно плате и ..

Терминальный разъемный коннектор угловой 2п

Терминальный разъемный коннектор угловой 2п

Разъемный двухпроводной коннектор для пайки на печатную платуПровода подводятся параллельно плате и ..

Микроконтроллер ATTINY13A

Микроконтроллер ATTINY13A

Миниатюрный экономичный AVR 8-битный микроконтроллер, который можно программировать как программатор..

Логический анализатор 8 каналов

Логический анализатор 8 каналов

Надписи на корпусе могут отличаться от указанных на картинке, но суть остается неизменной.Цифровой л..

Линейный подшипник 8мм

Линейный подшипник 8мм

Подшипник для линейного скольжения рабочего органа 3D-принтера или CNC по своим осям.Одевается на ци..

Подшипник для зубчатого ремня GT2 без зубьев

Подшипник для зубчатого ремня GT2 без зубьев

Подшипник для натяжения зубчатого ремня GT2 6мм на ось 5 ммПрименяется в 3D-принтерах и CNCШирина 10..

Подшипник для зубчатого ремня GT2 20 зубьев

Подшипник для зубчатого ремня GT2 20 зубьев

Подшипник для натяжения зубчатого ремня GT2 6мм на ось 5 мм20 зубьевШирина 10 мм..